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ABSTRACT 
 
In order to obtain financing at a competitive interest rate, 
and therefore ensure the best economics of a solar project, a 
bankable solar radiation dataset is required.  Almost all solar 
radiation datasets are derived from publically available data, 
and the strengths and weaknesses of these existing solar 
radiation databases are discussed herein.  While the financ-
ing community generally views the solar resource as stable, 
it also views the material miscalculation of the solar re-
source as one of the biggest risks in a solar project.  There-
fore, lenders and rating agencies alike require verification of 
the solar resource dataset to be utilized at each project loca-
tion (as this translates directly into electric energy produc-
tion forecast and revenues) as well as analyses of historical 
solar resource variability and probability. 
 
 
1. INTRODUCTION 
 
All indications are that solar installations are expected to 
continue to grow, and recent trends show an appetite for 
large-scale utility installations†.  With the solar industry on 
the verge of contributing  meaningfully to the energy mix 
and the need for cost competitive financing, these facilities 
seek non-recourse loans, and these types of loans require 
that they be critically evaluated much the same as any tradi-
tional IPP (independent power producer) electric generating 
facility (e.g., gas turbines, etc.). 
 
In the mid-1980s, solar thermal electric systems in the 5- to 
30-MegaWatt (MW) size were built; however, over the next 

20 years there was a hiatus in building large solar thermal 
electric facilities.  Ten years ago, photovoltaic (PV) systems 
in the 5- to 25-kiloWatt (kW) range were considered large 
systems and only five years ago, PV systems in the 100- to 
500-kW range were considered huge.  Today, there are PV 
solar generating facilities larger than 10 MW in size, and 
plans for both PV and solar thermal electric facilities in the 
100- to 500-MW range are under consideration.  
 
Initially, small solar generating facilities were financed by 
home owners or on the balance sheets of commercial com-
panies.  Tax credits and incentives helped make systems 
more affordable, and company image was a higher priority 
than a solar system’s installation cost and performance.  As 
total installed costs have decreased and stimulus increased, 
there has been a broader market appeal for installing solar 
systems as there is economic justification based on the esti-
mated rate of return (with subsidies).  Additionally, certain 
regions are required to meet renewable and/or solar energy 
portfolio standards that have prompted utilities to either 
build their own solar generating facilities or, more often, 
enter into firm off-take agreements for the delivery of elec-
tric energy from large or utility-scale solar generating facili-
ties.  As a result, financing has emerged as an important 
consideration in deploying a solar generating facility and 
meeting the needs of the financing parties.  While there are 
many considerations in solar generating facility financing, 
the key considerations include capital cost and system per-
formance (which is largely based on the available solar re-
source). 
 
While total financial viability of a solar project is paramount 
for any size of project, this is especially true for the utility -
scale solar projects that are now being submitted to banks, 
bonding companies, and even the U.S. Department of Ener-
gy under its various programs for financing.  While there are 



many factors considered when these institutions evaluate the 
ability of the project to repay its loan, the sale of the gener-
ated electricity is one of the most-important factors for as-
sessing a project’s viability and ability to repay its debt. 
 
In order to have a successful financing, a thorough and rig-
orous evaluation of the solar resource suitable for a project’s 
proposed technology is required.  To effectively analyze the 
solar resource, one needs to evaluate more than just the av-
erage irradiance available at the proposed site.  In addition, 
knowledge is required on how the availability of the re-
source varies over a day, month, year, or the duration of the 
project life, especially for projects with off-take agreements 
where there is a time-of-day pricing component.  Further-
more, plant design and operational planning benefit from a 
detailed understanding of the solar resource fueling the 
plant. 
 
This paper discusses the development of a sound, bankable 
dataset and the nature of the uncertainties in the various 
constituents of the data.  First, the issues of concern from a 
financial perspective are briefly reviewed to give context to 
the discussions on the solar resource dataset.  The next sec-
tion evaluates the ability of various existing datasets to ad-
dress these issues.  The Typical Meteorological Year (TMY) 
data files are suitable for initial evaluations, but typically do 
not necessarily constitute a bankable dataset.  Specific ex-
amples are given to illustrate the limited value of TMY files 
and why it is necessary to utilize the long-term databases 
from which the TMY files were created.  This includes 
evaluating the data files in the National Solar Radiation Da-
ta Base (NSRDB). Next, the importance of measured data is 
examined and the method to connect measured data with a 
longer-term database is presented.  Lastly, the building of a 
bankable dataset from the NSRDB and other available da-
tasets is illustrated and the use of the dataset is described 
and the key features are summarized. 
 
 
2. THE FINANCIAL PERSPECTIVE 
 
In pure market terms, most large or utility-scale solar gener-
ating facilities usually require a regulatory or above-market 
firm off-take agreement to support cash flow projections for 
debt repayment.  Of utmost importance to a lender is how 
the project provides and maintains cash flow over the debt 
term and its ability to meet certain lending covenants includ-
ing debt service coverage ratio (DSCR).  Key factors that 
lenders consider in evaluating a project’s ability to repay its 
debt include not only the stability and financial cost and 
performance of the project owner and credit worthiness of 
the off-taker, but also the ability of the project to maintain 
adequate cash flow under potential down side scenarios (or 
stress cases). 
 

The key consideration in debt repayment is the robustness of 
the revenue stream.  This is a direct product of the electric 
energy rate being paid by the off-taker and the solar generat-
ing facility’s electric energy production, which of course is 
reliant on the solar resource.  Unlike fossil-fuel generating 
facilities, solar generating facilities cannot control their fuel 
input and the variation of the fuel resource, which lenders 
recognize as risks associated with solar generating facilities.  
Knowledge of the amount, timing, and variability (including 
historical lows) of the solar resource influence the amount 
of electricity produced, and thus the revenue stream.   
 
Therefore, it is crucial to understand the variability of the 
resource from year-to-year.  In addition, as solar resource 
varies with seasons, it is also important to know the varia-
bility of the resource season-to-season not only to accurately 
project cash flow on a quarterly basis (which is a typical 
lender requirement), but also to properly evaluate design 
and maximize revenues if the off-take agreement has time-
of-day and/or seasonal pricing components.  Additional key 
components obtained by evaluating the solar resource and 
ultimately energy projections include the mean power gen-
eration projections and the minimum and maximum project-
ed generation during a season.  The mean power produced 
often determines the viability of the project; however, lend-
ers may choose to size debt based on a P90 forecast (as dis-
cussed in more detail in section 6).  The forecast minimum 
power produced provides a minimum threshold in which the 
project must be able to meet a 1.0x DSCR, or slightly high-
er, or debt sizing may be reduced.  This threshold sensitivity 
allows lenders to become comfortable that even under pre-
dicted “worst case” solar resource availability that the pro-
ject will be able to meet the loan payment schedule.  The 
maximum power production shows the range of generation 
that needs to be accommodated for the design of the project. 
Many other factors such as the persistence of sunny or 
cloudy weather and the dependability of the system to pro-
duce electricity over certain times of day in certain months 
are also important. 
 
While the facility’s theoretical generating capacity is specif-
ic to the type and size of the solar facility, it is the historical 
solar resource data input into the system performance model 
that emulates the amount of electricity that will actually be 
produced.  Therefore, it is important to have a reliable, well-
characterized solar radiation dataset. 
 
 
3. TMY FILES AND THE  

NATIONAL SOLAR RADIATION DATA BASE 
 
Typical Meteorological Year data files were first created 
from long-term data files in the National Solar Radiation 
Data Base (NSRDB) to help with the analysis of building 
performance at a time when computers were much slower 



Table 1:  WEIGHTING OF METEOROLOGICAL  
PARAMETERS 

Index 
Sandia 
Method 

NSRDB 
TMY 

Max Dry Bulb Temp 1/24 1/20 
Min Dry Bulb Temp 1/24 1/20 
Mean Dry Bulb Temp 2/24 2/20 
Max Dew Point Temp 1/24 1/20 
Min Dew Point Temp 1/24 1/20 
Mean Dew Point Temp 2/24 2/20 
Max Wind Velocity 2/24 1/20 
Mean Wind Velocity 2/24 1/20 
GHI 2/24 5/20 
DNI Not Used 5/20 

and had smaller memory banks than today.  Users wanted a 
one-year dataset that would emulate the results produced by 
using the thirty years of available data in the NSRDB.  
Many of the meteorological data parameters affected per-
formance more than the incident solar radiation, and the 
TMY data sets were created to be “typical” of the meteoro-
logical data contained in the NSRDB. 
 
Each TMY data file consists of a full year of data construct-
ed from twelve months chosen as most typical from the 
years that made up the data base.  The original TMY data 
files were created by Sandia National Laboratory using a 
method in which a typical month was selected based on nine 
daily indices consisting of the maximum, minimum, and 
mean dry bulb and dew point temperatures; the maximum 
and mean wind velocity; and the total global horizontal irra-
diance (GHI) (See Table 1).  Final selection of the month 
included consideration of the monthly mean and median of 
the nine indices shown in Table 1 and the persistence of 
weather patterns [1]. The twelve candidate months were 
then concatenated to form the representative TMY file. 
Modifications were made at the beginning and end of each 
month to smooth the transition caused by selecting adjacent 
months from different years.  
 
The original TMY data files were created from measured 
GHI SOLMET data and modeled ERSATZ data from 1952 
to 1975. TMY2 data files were created from the 1961 to 
1990 NSRDB where 93% of the values were modeled data.  
TMY3 data files were created from 1991 to 2005 NSRDB 
data plus the 1961 to 1990 NSRDB data if it existed for that 
location.  For the TMY2 data files, the direct normal irradi-
ance (DNI) was added to the weighting indices. This im-
proved the comparison of the annual average DNI in the 
TMY file to the long-term DNI average in the NSRDB files 
by approximately a factor of two.  The weighting for wind 
speed was reduced and the criteria for persistence were al-
tered slightly in the TMY2 and later TMY3 data files [2].  
Table 1 shows the difference in weighting used in Sandia 
(TMY) and NREL (TMY2 and TMY3) methods.  Note that 
half of the weight was placed on solar irradiance values and 
the other half was on meteorological parameters. 
 
For the original TMY data files, the monthly mean daily 
total GHI and DNI, from measured SOLMET data, have an 
estimated uncertainty of ±7.5% and ±10% respectively.  
Similarly, the monthly mean daily total GHI and DNI, from 
the modeled ERSATZ data, have an uncertainty of ±10% 
and ±20%, respectively [9].  
 
For the TMY2 files, the months from May 1982 through 
December 1984 were excluded from the analysis because 
the aerosols from the eruption of El Chichón, Mexico dif-
fered significantly from typical values.  For TMY3 files, the 
months from June 1991 to December 1994 were excluded 

because the aerosols from the eruption of Mount Pinatubo, 
Philippines were atypical.  As a result of the exclusion, 83% 
of the TMY3 files were derived using 11.5 years of data. 
 
3.1 Limitations of the TMY2 and TMY3 Files 
 
The TMY files were created to represent typical meteoro-
logical years and not typical solar years.  Due to the limited 
number of years in most TMY3 data files, there is no guar-
antee that the TMY3 file will be an accurate representation 
of the average GHI or DNI for the entire historical data set.  
Examples where the GHI and DNI TMY annual average are 
different from the NSRDB average are shown in Figs. 1-2.  
For example, at Groton-New London, CT, the annual TMY 
GHI is below the yearly average GHI for every single year 
in the NSRDB.  A moving average was used and no 12-
month period has an annual GHI as low as the TMY3 file.  
This moving average approach takes any consecutive twelve 
month period and generates annual average values.  For 
example, it averages January through December, then Feb-
ruary through January of the following year, then March 
through February of the next, etc. to generate the yearly 
averages. For Paso Robles, CA, the opposite is true.  The 
GHI of every single 12-month period is below the annual 
average TMY3 GHI. 
 
Figs. 1-2 also show the DNI for Groton-New London, CT, 
and Paso Robles, CA.  These two examples illustrate that 
even when 50% of the indices weighting is GHI and DNI, 
there is no guarantee that the annual average irradiance val-
ues obtained from a TMY file will closely represent the true 
long-term average solar irradiance. 
 
The TMY dataset purposely excludes extreme events and 
therefore is of no use when trying to understand resource 
variability (and for that matter obtain the P90 or P95 levels 
of confidence as discussed in section 6).  
 



Fig. 2: Plot of GHI and DNI for Paso Robles, CA.  The 
straight solid line is annual average GHI from the TMY3 
data file and solid line is the annual average GHI from the 
NSRDB data file. The dashed straight line is the annual av-
erage DNI from the TMY3 file and the dashed curved line is 
the annual average DNI from the NSDB file. 

Fig. 1: Plot of GHI and DNI for Groton-New London, CT.  
The straight solid line is annual average GHI from the 
TMY3 data file and solid line is the annual average GHI 
from the NSRDB data file. The dashed straight line is the 
annual average DNI from the TMY3 file and the dashed 
curved line is the annual average DNI from the NSDB file.  

As with meteorological variables, it takes approximately 
thirty years of data to fully characterize the solar irradiance 
statistics for a site.  By using thirty years of data all of the 
shorter-term weather variations are included, such as those 
caused by El Niño and La Niña episodes, or even the 11- or 
22-year sun spot cycle.  These shorter cycles definitely in-
fluence the resulting means or persistence measures.  For 
shorter time intervals, such as 15 years, the likelihood in-
creases that weather cycles such as El Niño events will skew 
the statistical characteristics. 
 
 
4. NSRDB’S STRENGTHS AND WEAKNESSES 

The NSRDB is a solar radiation database maintained by 
NREL.  The NSRDB can be divided into two sections.  The 
older NSRDB consists of solar radiation and meteorological 
values from 1961 through 1990 for 239 sites [3].  While 
there are some sites with measured irradiance data, the 
NSRDB consists mainly of modeled values determined us-
ing the METSTAT model [4].  The METSTAT model uses 
cloud cover, aerosol, and other meteorological data to calcu-
late the incident GHI and DNI values that are statistically 
similar to actual measured hourly irradiance data.  While 
some minor problems have been identified in the 
METSTAT model that affect irradiance estimates during 
very cloudy periods [5], this model produces an irradiance 
dataset that is a good statistical match to actual measured 
irradiance data. 
 
When all the meteorological and aerosol data are available, 
METSTAT data have an uncertainty of ±9% at the 95% 

confidence level.  There are periods in the NSRDB where 
the meteorological values have had to be extrapolated, and 
these periods have a higher uncertainty.   
 
Any long-term climate change trends in the irradiance data 
have been obscured by the nature of the METSTAT model 
and of the assumptions used to generate the irradiance data.  
In addition, trends are disguised by systematic errors result-
ing from the uncertainty in the meteorological data and from 
systematic errors in the irradiance data used to validate the 
model.  The uncertainty of the GHI data derived using the 
METSTAT model is 9%.  However, this does not mean that 
the NSRDB hourly GHI value is within 9% of the actual 
GHI value 95% of the time.  It means that true average GHI 
that would result from several measurements under similar 
conditions should lie within nine percent 95% of the time 
[5]. 
 
The NSRDB data have been generated for 1,454 stations 
during 1991-2005.  From 1998 to 2005, the data values were 
derived with models using satellite images and other mete-
orological and auxiliary data [6].  Most of the early data 
values, before 1994, were derived using the METSTAT 
model with the improvement suggested in [5] to produce 
better statistics during very cloudy weather.  From about 
1994 to 1998, cloud height and other data from the surface 
weather observation stations (ASOS/AWOS) were used as 
input to a modified METSTAT model to produce irradiance 
values.  In an attempt to produce a serially compete dataset, 
some of the input data were modeled from nearby stations in 
cases where records were incomplete or missing.  The data 
produced with modeled input data have a higher uncertainty 



flag, and some values have uncertainties as high at 24% for 
GHI and 27% for DNI.  Therefore, one should always check 
the uncertainty flags with the data. 
  
Starting in 1998, satellite-derived irradiance values became 
available for all sites in the NSRDB, and the records were 
very complete.  As a result, satellite derived irradiance data 
have been produced for all sites in the NSRDB from 1998 
through 2005.  The NSRDB also contains the ASOS/AWOS 
modeled data as well as some measured data for those sites 
with high quality measured data that are co-located or near 
the ASOS/AWOS stations.  The ASOS/AWOS stations are 
automated weather stations located at or near airports.   
 
The satellite-derived data produced by the State University 
of New York (SUNY) at Albany was obtained from images 
taken once per hour [7].  The images were from the GOES 
weather satellites and only the visual channel images were 
used.  The SUNY satellite-derived data is on a 0.1-degree 
grid; roughly a 10-km grid.  The GOES west images in the 
SUNY data set were taken 30 minutes after the hour and 
GOES east images were taken 45 minutes after the hour.  
(Today the GOES satellites produce images every half 
hour.)  To integrate the satellite derived data into the 
NSRDB, the satellite images had to be shifted either one 
half hour or fifteen minutes so that they were coincident 
with the meteorological data in the dataset.  The solar data 
was then merged with the ground station data.  The averag-
ing process is explained in the NSRDB user manual [6].  
The time shifting increased the uncertainty in the data by 1 
to 2%.  This uncertainty is typically a random error that av-
erages out over time.  The uncertainty for the satellite-
derived GHI is 8% and the DNI is 15% at the 95% confi-
dence level. Again, this refers to the uncertainty against the 
average of several GHI or DNI measurements made under 
similar circumstances.  A thorough discussion of the uncer-

tainties in the NSRDB data can be found in the user manu-
als [5, 6]. 
 
New models for deriving irradiance data from satellite im-
ages are currently being evaluated.  Most models use the 
data from the visual spectrum channel.  The GOES satellites 
also measure irradiance at other wavelengths, such as IR, 
and newer models are starting to incorporate data from these 
other channels.  There are several companies now that pro-
duce irradiance data from satellite images.  These analyses 
are being automated and some companies are forecasting 
the solar resource with the aid of satellite data. 
 
 
5. NASA’S SURFACE METEOROLOGY AND SOLAR 

ENERGY DATA 
 

The NASA’s Atmospheric Science Data Center provides 22 
years of surface meteorological and solar irradiance data 
(NASA SSE) going back to 1983.  This data set covers the 
world, with values every 3 hours.  Originally the grid size 
was approximately 2.5 degrees, but recent efforts have pro-
vided data on a 1.0-degree grid [9]. 
 
A 1.0-degree grid is not fine enough for evaluating the irra-
diance at a single site, but the long-term nature of the data is 
very useful.  Figures 3 and 4 compare the GHI for Phoenix, 
Arizona and Daggett, California from 1961 through 2005 
using data from the NSRDB.  For the most part, the data 
from the sites is very consistent, with the GHI at Daggett 
between 5 and 10 percent higher than in the Phoenix area.  
Only the data between 1995 and 1998 deviated from that 
trend.  The Phoenix data between 1995 and 1998 have un-
certainties as high as 24% for the GHI. 
 

Difference in DNI between Daggett, CA, and Phoenix, AZ
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Fig. 4:  Percent difference between annual DNI for Daggett, 
CA, and Phoenix, AZ.  On average the Daggett DNI is about 
7% greater than the Phoenix DNI and 95% of the years are 
within ±10% of the average. 

Fig. 3:  Long-term variability for Direct Normal Irradiance 
at Daggett, CA and Phoenix, AZ. 



In general, the two sites, while hundreds of miles apart, do 
exhibit similar trends.  The sites within the 1.0-degree grid 
generally exhibit the same trend while the mean values may 
differ.  Therefore, long-term trends that show up in this 
NASA/NOAA dataset are probably representative of the 
data from the sites in the gridded area. 
 
 
6. GROUND-BASED IRRADIANCE DATA 
 
Under optimal maintenance conditions, the uncertainty in 
ground-based solar radiation is ±5% for GHI, ±3% for DNI, 
and ±7% for diffuse horizontal irradiance (DHI).  To 
achieve these uncertainties, the domes and windows of the 
instruments must be cleaned on a regular basis, the pyrheli-
ometer for the DNI measurement must be aligned properly 
with the sun, the DHI must be measured using a shade disk, 
and the instruments must be calibrated regularly.  The stud-
ies show that a Rotating Shadowband Radiometer (RSR) 
yields DNI with an uncertainty of ±5% [10]. 
 
Note the caveat that the instruments must be well-
maintained.  If a solar monitoring station is set up and left 
without maintenance, the uncertainty in the data increases 
significantly.  Long-term data are difficult to find because 
funding fluctuates over time, and monitoring requires con-
sistent vigilance to obtain good results.  It is often difficult 
to validate long-term trends because long-term trends are 
small, and consistent calibrations are necessary throughout 
the length of the database.  An example of a long-term trend 
is shown in Fig. 5. The DNI increased by about 10% at three 
stations in the Pacific Northwest.  The year to year variation 
of about 5% is one reason it takes a long time to observe a 
trend with any statistical certainty.  Note that it takes nearly 
all thirty years to build confidence in the trend, and it only 

clearly shows in the DNI.  The DNI is more sensitive than 
GHI to changes in cloudiness and aerosol density. 
 
 
7. INFORMATION REQUIRED FOR A BANKABLE 

SOLAR DATABASE 
 

Planning, design, and financing of a solar project depend on 
knowledge of the system performance.  To estimate system 
performance one needs to know the solar resource incident 
on the system, meteorological data that will affect system 
performance, and the relationship between these resource 
parameters and system output.  In this study, only the solar 
resource is discussed as it is the primary parameter that af-
fects system performance and often the most difficult one to 
characterize accurately. 
 
A full description of the revenue stream from the sale of 
electricity produced by the planned facility is an important 
component of the financial plan.  One of the greatest uncer-
tainties in this revenue stream is the variability of the solar 
resource that is used to generate the electricity.  While it is 
certainly important to know the expected average energy 
production of the system, it is also critical to understand the 
variability of the production from season to season and year 
to year.  Financial institutions often ask what the P50, P90, 
and P95 or P99 levels of production are, and rating agencies 
typically use a P90 or P99 production level to rate the via-
bility of the project.   
 
In solar resource assessment a P95 level of production 
means that the electric energy generated will exceed this 
level 95% of the time.  When doing a financial analysis, it is 
necessary to know the worst revenue year to be expected so 
that one can evaluate how well a company can maintain 
loan repayments during poor resource years.  Further, a one-
year average should be used because the finance structures 
of typical projects require them to service the debt once or 
twice a year, not every five or 10 years.  Other factors, such 
as the financial stability and credit worthiness of the compa-
ny, are also important. 
 
The amount of the loan and the rate of the loan all depend 
on the risk perceived by the lender.  With larger systems 
requiring tens or hundreds of millions of dollars to con-
struct, lenders are very conservative in their estimates.  
While every lender has its specific requirements in sizing a 
project’s debt, lenders typically try to liken the perceived 
solar resource risk to a confidence level that they feel re-
flects a typical power production project.  This means that 
we have seen debt sized based on a one-year P50 to P90 
with debt service coverage ratios varying from 1.5x to 1.3x, 
respectively.  Besides knowing the variability of the solar 
resource over time, it is also important to accurately evalu-
ate the uncertainty in the data and provide sound reasoning 

Fig. 5: Ground-based DNI measurements in the Pacific 
Northwest from 1978 to 2009 show about a 10% increase 
over thirty years.  The GHI increase is only a few percent 
and is within GHI uncertainty estimates. 



that validates the level of uncertainty.  Therefore it is finan-
cially advantageous to provide the most accurate data avail-
able. 
 
 
8. BUILDING A BANKABLE DATASET 

 
Ideally, the most bankable dataset would come from a high-
quality site-specific solar monitoring station that is well 
maintained and the measurements taken over 30 years or 
longer.  However, very few data sets of that duration exist, 
and the need for short-term profitability places severe con-
straints on the practicality of undertaking any new and com-
prehensive studies before seeking funding for a project at a 
given site.  Fortunately there exists a suitable database that 
helps characterize the solar resource and gives a good idea 
of the hourly, monthly, and annual incident energy.  These 
data are usually archived in the NSRDB and the National 
Climatic Data Center (NCDC).  The NSRDB contains mod-
eled solar radiation values from 1961 to 1990 for 239 sites 
and from 1991 to 2005 for about 1,454 locations across the 
United States.  Almost all of the 239 sites in the 1961-1990 
NSRDB are represented by sites in the 1991-2005 NSRDB.  
Daggett, CA and Phoenix, AZ shown in Figs. 3 & 4 are 
good examples of the longest term sites. 
 
To obtain long-term information for the project site, one has 
to extrapolate the information from a nearby site that has 
data in the NSRDB to the project site.  Fortunately, NREL 
also has an archive of satellite-derived data from 1998 to 
2005 on a 0.1 degree grid for the United States.  In addition, 
satellite-derived solar radiation data are also commercially 
available from 2005 to present.  Comparing the satellite-
derived data from the NSRDB site and the project location 
helps to accurately extrapolate the NSRDB data to the pro-
ject site [9].  The information from the NSRDB site pro-
vides information on the long-term variability and the com-
parison of the satellite-derived data between the two sites 
provides a good estimate of the average solar resource.  
 
A realistic bankable dataset would include 15 to 45 years of 
data from a one of the sites in the NSRDB.  A satellite-
derived dataset for the plant location (a 0.1-degree grid reso-
lution would be acceptable) and a neighboring site in the 
NSRDB would be necessary in order to model the expected 
performance at the planned power facility site.  The satel-
lite-derived data set for 1998 through 2005 is available on 
the NREL website.  It is expected that a few years of addi-
tional satellite-derived irradiance values will be added to 
this database.  More current data can be purchased from 
commercial companies. 
 
The 1983-2005 data from NASA SSE dataset (on a 1.0-
degree grid) for the location under study may also be useful.  
Comparison of the NASA SSE data with the NSRDB data-

base would help identify any potential problems with the 
modeled NSRDB data if the relative values in the two data 
sets suddenly deviate.  Long-term climate trends may also 
be visible in the NASA SSE dataset since it is produced in a 
consistent manner from 1983 to 2005 while in the NSRDB 
was produced from a number of different models, especially 
in the 1991 to 2005 time period. 
 
To increase confidence in the dataset and reduce the uncer-
tainty, the bankable dataset would benefit greatly from 
ground-based measured data.  While the mean bias esti-
mates of satellite data are small, on the order of a few per-
cent for GHI, it is useful to have the satellite-modeled data 
validated by measured ground-based data because there are 
occasional systematic problems with satellite-derived data 
for some types of terrain (e.g. dry salt beds, forested areas, 
etc.) and it is always valuable to confirm that the satellite 
data are accurate.  A minimum of one year’s worth of 
ground-based data can validate the satellite-derived data for 
the site and provide more stringent uncertainty limits on the 
data.  Of course, concurrent satellite data would have to be 
purchased for the location. In addition, the current model of 
the satellite derived data would have to be compared with 
the historical satellite-derived data in the NSRDB. 
 
The ground-based data should be gathered for time intervals 
no longer than 15 minutes as such short time-interval data 
are valuable in designing and operating the facility.  
 
There are two periods in the NSRDB where the irradiance 
values were affected by volcanic eruptions: 1982-1984 (El 
Chichón) and 1991-1994 (Mt. Pinatubo).  There have been 
only four major volcanic eruptions during the past 100 years 
that significantly affected the atmospheric aerosols. Thus, 
we might expect about one major event over a 25-year life 
of a solar facility.  Therefore, a bankable solar dataset 
should include data from at least one of these events in the 
analysis. 
 
 
9. USING THE BANKABLE SOLAR DATASET 
 
Once the irradiance dataset has been gathered, the perfor-
mance of the solar system can be calculated through a varie-
ty of models.  With 15 to 45 years of data, one can then 
evaluate the minimum, maximum, and average production 
of the facility.  Statistical packages can be used to determine 
the probability of performance at any level from P50 to P99.  
The variability of the performance from year to year will be 
evident, and one can plan for production shortfalls during 
the cloudiest years.  More importantly, the variation in the 
capacity factor for the facility can be established and the 
seasonal variability and diurnal variability of the production 
can be determined.  Capacity factor is the annual estimated 



output of the plant divided by the output of the plant if it ran 
24 hours per day, 365 day per year at maximum output.  
 
The long-term data can also be used in developing opera-
tional and management plans and assisting in the creation of 
a forecasting model. 
 
 
10. SUMMARY 

 
A bankable dataset consists of many years of data, typically 
between 15 to 45 years to characterize the variability of the 
resource.  It is possible to use a long-term dataset from 
nearby sites because satellite-derived data sets are available 
on a fine scale (about 0.1 degree grid, resolving to about 10 
km).  Long-term satellite-derived data from the NASA SSE 
is valuable in looking at long-term trends and identifying 
any inconsistencies in the modeled NSRDB data. 
 
Ground-based measured data enhance the value of the data 
set by validating the satellite-derived data or showing any 
possible systematic bias in the satellite data.  This requires 
concurrent ground-based measurements and satellite derived 
data.  The better the ground-based data, the more accurately 
the bias in the satellite-derived data can be determined.  
Poorly maintained solar monitoring sites are not much better 
than satellite-derived data because of the systematic errors 
that result. 
 
A thorough knowledge of the uncertainties and accuracy of 
the data set is important.  When the production of the sys-
tem is analyzed for financing, the accuracy affects the risk 
involved.  To compensate for this risk the most conservative 
values are used. 
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