Energy Trust Shade Effect Evaluation Form
Job Name: \qquad
Contractor: \qquad
Date: \qquad
\qquad
Array Tilt:
Array Orientation:
Zip Code of Site: \qquad
The sun path chart to the right is for a solar electric system located in Portland, Oregon tilted 22.5 degrees with a 180 degree azimuthal orientation. The annual AC output for a 1 kW peak DC system with these characteristics is about $1103 \mathrm{kWhr} / \mathrm{yr}$.

For comparison, a 1 kW DC peak system with near optimum tilt and orientation (32 degree tilt and 190 degree azimuth) will produce approximately $1119 \mathrm{kWhr} / \mathrm{yr}$. Local Production Capacity $=1119 \mathrm{kWhr} / \mathrm{yr}$.

At Portland, a system oriented as in the sun path chart to the right will produce 98% of the annual electricity produced by an optimally oriented system.

Draw the horizon on the sun path chart and shade obstructed areas. To calculate the percent reduction due to shading, enter the percentage of system power output shown on the sun path chart for areas shaded by obstructions into the table on the right.

For example, assume the percentage of system power output from 7:00 to 8:00 between September 22 and October 21 is 0.4%, and 50% of that period is shaded. Enter 0.2% in the column under 7-8 and the row labeled Feb-Mar on one side and Sep-Oct on the other. Enter zero for each box where there is no shading. Note that hours are in solar time.

Sum the shading values in each column and enter the total in the bottom row. Sum the bottom row to determine the percent annual shading.

Pct Annual Shading: \qquad

SOUTH
c) Univ. of Oregon SRML Sponsor: Energy Trust (Solar) time zone: -8 Tilt: 22.5 Aspect: 180 Portland, OR

Estimated annual AC output 1103 kWhr/yr
for a 1 kW peak DC system

